Covid-19 vaccines pharmacovigilance-a rapid review

Nilufa Sainudheen¹, Alisha K.J¹, Fathima K.N¹, Alona Baby¹, Shaji George*²

¹ B. Pharm, Nirmala College of Pharmacy, Muvattupuzha, Ernakulam, Kerala.
² Professor and Head, Department of Pharmacy Practice, Nirmala College of Pharmacy, Muvattupuzha, Ernakulam, Kerala.

Abstract

The rapid process of research and development and lack of follow-up time post-vaccination aroused greater public concern about the safety profile of COVID-19 vaccine candidates. Pharmacovigilance is critical for gathering, recognising, and monitoring adverse events, which is the primary goal. The reported adverse events should be evaluated to determine the causal relationship and avoid unnecessary consequences on the recipient. Many people are getting vaccines in a short period of time, putting a strain on pharmacovigilance facilities. The International Society of Pharmacovigilance (ISOP), the French National Agency for Medicines and Health Products Safety (ANSM), and many others worked together and took many initiatives to determine the safety and efficacy of vaccines, as well as to provide answers to the questions that were raised. Signals were discovered and several adverse occurrences were identified thanks to pharmacovigilance. BioNTech/Pfizer-mRNA, Moderna-mRNA vaccine, Covishield, Johnson and Johnson, Vaxzervria, Sputnik V, and Covidicea pharmacovigilance is discussed. There were 12,249 ADRs reported with BioNTech/Pfizer-mRNA, 577 ADRs with Moderna-mRNA vaccine, 447 ADRs with Covishield, 653 ADRs with Johnson and Johnson, and 743 ADRs with Vaxzervria. As a result of these immunizations, Immune thrombocytopenic purpura, cerebrovascular events, thrombosis, thrombocytopenia, facial paralysis, fatalities, and a variety of other potentially lethal reactions have all been linked to these immunizations. However, the recorded incidents were minor in comparison to the patients' safety. The Uppsala monitoring centre kept track of all of these events. Uppsala monitoring centre, an initiative of WHO to detect various ADR relating to medications and preventing serious causalities associating with it have a greater role in minimizing the serious cases occurs with medicine dysfunction.

Keywords: COVID-19, Vaccines, Virus, Immunization, Pharmacovigilance, Clinical trials, safety, efficacy.

Introduction

In December 2019, the first case of coronavirus illness 2019 (COVID-19) was reported [1]. More than 175 million COVID-19 cases, including over 3.8 million deaths, had been documented in 221 countries as of June 15, 2021. Countries and territories (n.d.) (n.d.) (as a response to COVID-19 pandemic, 102 vaccine candidates on 10

Days 15 vaccines are in clinical trials, while 15 platforms are under development have previously been granted an emergency licence or approval [3] should be used. These platforms can be classed as either traditional ways that have previously resulted in licenced vaccines (e.g., inactivated, recombinant vaccines) or novel approaches that have not yet resulted in licenced vaccines. Proteins, vectored vaccinations), or as methods have never been used in an approved vaccine before (RNA and DNA vaccinations, for example) [4]. There is currently no vaccination available ever been approved for use against
coronaviruses. Prior to [4], the quick research process was observed in humans and research, as well as limited post-vaccination follow-up time, have sparked widespread public concern regarding the safety of vaccines. The creation of vaccines aids in the prevention of the spread of the novel coronavirus illness. Many various types of vaccines are being developed [2], and the participants were receiving their first dose of immunizations. When a vaccine is launched into the market, pharmacovigilance is very crucial. The primary goal of vaccine pharmacovigilance is to detect and monitor adverse reactions to vaccination. Because so many people are being vaccinated against COVID-19, pharmacovigilance centres are finding it difficult to examine possible adverse events in a timely manner. Understandings between patients, caregivers, private practitioners, government doctors, field-level health care workers, people working in the AEFI programme, and the pharmacovigilance programme are more crucial than ever before. Information about adverse responses is critical, and it should be reported as soon as possible so that action can be done to protect vaccine recipients and avoid unnecessary reactions [3]. The adverse occurrences that have contact Vigibase, which is the Uppsala monitoring centre’s database of individual case reports. The basic backbone of pharmacovigilance is spontaneous reporting by health care workers. The most widely used method of detecting vaccine-related signals is to use national passive surveillance (e.g., spontaneous reporting of suspected adverse drug reaction) in collaboration with healthcare professionals (HCPs) or patients to spontaneously report the occurrence of safety and/or effectiveness. The active surveillance approach entails the collecting of organised data from vaccinated persons who are taking part in a study at a specific moment in time.

Analysis on safety and efficacy of Covid-19 Vaccine

Globally, the efficacy of all vaccines exceeded 70%, with RNA-based vaccines having the highest efficacy of 94.29 percent; additionally, vaccine efficacy may be higher in Black or African American individuals, young people, and males. The range of vaccine-related adverse drug reactions (ADRs) is exceedingly broad, with discomfort, weariness, and headache being the most common ADRs. The majority of ADRs are acceptable and fall into the grade 1 or 2 severity range. Thromboembolic events (21–75 instances per million doses; myocarditis/pericarditis, 2–3 cases per million doses) have been found as serious ADRs. In conclusion, vaccines are a potent weapon for controlling the COVID-19 pandemic, with high efficacy and low adverse reactions. Furthermore, the vaccine-related ADRs cover a wide range of symptoms, with the majority of reactions occurring within a week, but some may take longer. As a result, ADRs following immunization must be identified and managed as soon as possible.

A meta-analysis of the published trials of the COVID-19 vaccines was conducted to ascertain efficacy. Furthermore, real-world data was gathered retrospectively from the Vaccine Adverse Event Reporting System (VAERS). To determine the efficacy of the COVID-19 vaccines, the researchers analysed all COVID-19 vaccine data from phase III clinical trials, which comprised a total of 194,015 cases. Inactivated vaccinations had a 73.11 percent efficacy (95 percent confidence interval), protein subunit vaccines had an 89.33 percent efficacy, and RNA-based vaccines had a 94.29 percent efficacy. The viral vector (non-replicating) vaccinations had a 79.56 percent effectiveness rate [5].

Incidence of ADRs related to the COVID-19 vaccines

When it comes to immunizations, another crucial consideration is safety. As a result, a meta-analysis of clinical trial data is undertaken first, followed by the collection of real-world data from the CDC’s VAERS database in the United States. In clinical studies, 36 forms of ADRs were detected, with eight of them occurring after vaccination with more than half of the vaccinations (pain, swelling, fever, exhaustion, chills, muscle pain (myalgia), joint pain (arthralgia), and headache). These 8 ADRs are then subjected to a meta-analysis. Subgroup analyses stratified by dose, vaccination type, and age are also done to reduce heterogeneity.

Only RNA-based vaccines, viral vector (non-replicating) vaccines, and protein subunit vaccines were included in the studies because inactivated vaccines lacked ADRs data for dosage 1. Pain (at the injection site) after dose 1 was the most commonly reported ADR in protein subunit vaccines (38.46 percent) and RNA-based vaccinations (38.46 percent) (80.97 percent). Pain was experienced by younger vaccine recipients (16 to 55 years old) more frequently than by older vaccine recipients (over 55 years old; 80.00 percent versus 59.35 percent). After dosage 1, fatigue was the second most
common adverse reaction (30.77 percent of those receiving the protein subunit vaccines and 39.27 percent of those receiving the RNA-based vaccines). The incidence was substantially greater in the 16- to 55-year-old subgroup than in the over 55-year-old category (52.72 percent versus 33.73 percent). Other ADRs were found in less than half of the cases. Muscle pain (myalgia), joint pain (arthralgia), chills, swelling, and fever came in third and fourth, respectively. ADRs were common following vaccination with RNA-based vaccines.

The total frequency of ADRs was greater in those who got dose 2 than in those who received dose 1. Pain was the most common ADR, as it was with dose 1. Inactivated vaccinations (31.75 percent), protein subunit vaccines (57.69 percent), RNA-based vaccines (81.76 percent), and viral vector (non-replicating) vaccines all had high rates of discomfort in individuals who received them (44.75 percent). The following age groups had the highest rates of pain: 16 to 55 years old (72.40 percent) and above 55 years old (55.40 percent) (51.06 percent). The incidences of ADRs other than pain varied depending on the vaccination type. Inactivated vaccines, in particular, had the lowest rate of ADRs, with overall ADR rates of less than 10%. Headache, swelling, weariness, chills, joint pain (arthralgia), muscle pain (myalgia), and fever were the most common ADRs, in order of frequency. The ADRs linked with the other three types of vaccines were comparable to those seen following the first two types of immunizations [5].

COVID-19 Vaccine Vigilance

Arterial hypertension, cardiac arrhythmias, Herpes zoster infection, thrombocytopenia, spontaneous hematomas, and diabetic imbalance were observed in 74 percent of women and 43 percent of 50–64-year-olds who received the BioNTech/Pfizer COVID-19 vaccination. Five incidences of severe hypersensitivity reactions were promptly recorded. The following ADRs are uncommon, although clinical trial evidence [7] shows that lethargy, headache, nausea, fever, and vomiting are common after the second dose in young people. With or without a history of hypertension, 313 cases of severe arterial hypertension were documented immediately or within a few hours or days after immunisation, which can be treated with antihypertensives by increasing the dosage of pre-existing antihypertensive medications [6]. ADRs are the greatest worry for 74 percent of women and 49 percent of patients in the 75-84 age group who have received the Modern COVID-19 vaccination. ADRs include pain, inflammation, and skin eruption at the injection site, influenza-like illness (fever, chills, myalgia, arthralgia, asthenia), lymphadenopathy, digestive problems, and hypersensitivity [8, 9]. Various serious events that occurred with different COVID-19 Vaccines are discussed below:

Cerebrovascular Events

Immune thrombocytopenia purpura

Immune Thrombocytopenic Purpura (ITP) is an immune-mediated disease characterised by a reduction in platelet count as a result of aberrant platelet synthesis and destruction in the circulatory system. Bleeding, bruises, petechiae, haemorrhage gums, or life-threatening bleeding are all possible outcomes. This is frequently preceded by infection, which occurs 7-10 days before to development of symptoms [10-12]. ITP’s pathophysiology is unknown, however it could be caused through molecular mimicry, as shown in the following steps below.

- The influenza vaccine’s peptide haemagglutinin is structurally similar to platelet antigens.
- B and T lymphocytes are activated as a result. Antibodies are produced Antibodies will seek for antigens on platelet surfaces.
- Macrophages will penetrate and engulf the antigens, causing platelets to have a shorter half-life.

Platelet synthesis will be reduced as a result of these antibodies. Influenza, measles, mumps, rubella (MMR), hepatitis B, human papillomavirus, varicella, and diphtheria-tetanus-pertussis (DPT) immunizations in children and adolescents are all risk factors for ITP, as are other vaccines. Yeast proteins, adjuvants, and preservative diluents are examples of vaccination components. Adjuvants such as aluminium hydroxide and phosphate, which are used in vaccinations to improve immunogenicity, can cause an autoimmune inflammatory syndrome [10-13, 34]. 36 incidences of immune thrombocytopenic purpura were reported to the Vaccine Adverse Event Reporting System after the Pfizer/BioNTech and Moderna COVID-19 vaccinations [14]. In the pharmacovigilance database, 150 cases of immune thrombocytopenic purpura were documented after immunisation, according to BMJ [15]. According to the USFDA and the CDC, ITP is treatable with corticosteroids and immunoglobulins in a small percentage of the population [16]. The increased risk of
ITP after receiving the COVID-19 vaccine, as well as the response to normal ITP therapy, suggests that there may be a link between ITP and the COVID-19 vaccine [17].

Thrombosis and Thrombocytopenia
After receiving the COVID-19 vaccine, patients should be cautious about thrombosis and thrombocytopenia. After 6-13 days of vaccination with Janssen’s COVID-19 vaccine, 6 occurrences of cerebral vein thrombosis (CVT) associated with thrombocytopenia in women aged 18-48 years were recorded [18]. This put a halt to its usage in the European Union, South Africa, and the United States. [19]. 269 thromboembolic instances have been reported to Eudravigilance as a result of the Vaxzervria vaccination. [20] There were 57 cases of cerebrovascular accident, 34 cases of myocardial infarction, 22 cases of pulmonary embolism, 31 cases of monoplegia, 15 cases of deep vein thrombosis, 11 cases of ischemic stroke, 1 case of dissemination intravascular coagulation, 53 cases of splanchnic vein thrombosis, and 173 cases of cerebral vein thrombosis. Most Jyothi et al, Journal of Innovations in Applied Pharmaceutical Science 19 Females have been the victims of these incidents more frequently. In Denmark, Vaxzervia was suspended, however it is still prescribed for people over the age of 65 in the United Kingdom, Belgium, and the Netherlands. The advantages outweigh the risks, according to the pharmacovigilance Risk Assessment Committee. Three deaths have been reported in India with the Covishield vaccine, with possible temporal links, and one death has been linked to thrombocytopenia and stroke [21]. Sputnik Vaccine is a vaccine that protects against the effects of the Sputnik There was one case of deep vein thrombosis, one case of cerebral circulatory failure, one case of transient ischemic stroke, and one case of vascular encephalopathy. This is approved for emergency use in 62 countries and is currently under consideration in the EU. Russia, Armenia, Belarus, Guinea, Hungary, Iran, Kazakhstan, Kenya, Laos, Lebanon, Nicaragua, Pakistan, Paraguay, Serbia, Syria, Tunisia, UAE, Venezuela are currently using it [22]. In phase 3 clinical studies, there were no reports of thrombosis with Convidicea [23].

Central Nervous System Related Events
Facial paralysis
After COVID-19, be on the lookout for facial paralysis-related occurrences. In crucial phase 3 clinical trials, incidences of facial paralysis were documented using mRNA Covid-19 vaccines (Pfizer/BioNTech and Moderna). Face paralysis occurrences were reported in 7 out of 35654 instances with the vaccine group, compared to 1 out of 35611 cases with the placebo group [7, 24]. So far, no causal association has been identified. As of March 9th, 2021, the World Health Organization Pharmacovigilance database had 133883 cases of adverse drug events associated with mRNA Covid-19 vaccines. A total of 844 cases of facial paralysis have been documented. Six hundred and eighty-three cases of face paralysis, 168 cases of facial paresis, 25 cases of facial spasms, and 13 cases of facial nerve diseases. As of March 9th, 2021, 749 cases of facial paralysis-related events had been recorded with Pfizer-BioNTech mRNA Covid-19 vaccine and 95 cases of facial paralysis-related events had been reported with Moderna mRNA Covid-19 vaccine.

Guillain-Barré Syndrome (GBS)
GBS has only been reported in a small percentage of those who have taken the Johnson & Johnson (Janssen) vaccine. The immune system of the body affects components of the neurological system in this illness. Muscle weakness and other symptoms may result as a result of this. Symptoms developed in the majority of participants within 6 weeks of receiving the immunisation.

- Weakness or tingling, especially in the legs or arms, that worsens and/or spreads to other parts of the body
- Difficulty in walking
- Difficulty with facial movements, such as speaking, chewing, or swallowing
- Double vision or difficulty moving the eyes
- Problems with bladder control or bowel function.

If you experience any of these symptoms after receiving the Janssen vaccination, the FDA recommends seeking medical assistance straight away [25].

Events Related To Heart
Myocarditis
Myocarditis is a heart muscle inflammation (myocardium). Inflammation can impair the heart's ability to pump blood, resulting in fast or irregular heartbeats. Myocarditis is mainly caused by a virus
infection. Myocarditis can occur as a result of a medication reaction or as part of a larger inflammatory illness. Chest pain, exhaustion, shortness of breath, and rapid or irregular heartbeats are signs and symptoms of myocarditis. When you are infected with a virus, your body generates cells to combat it. Chemicals are released by these cells. Some substances released by disease-fighting cells can inflame your heart muscles if they enter your heart. Coxsackie B viruses, Epstein Barr virus, HIV, Herpes, parvovirus, mycoplasma, and other viruses can cause myocarditis. Other causes include certain chemicals or allergic reactions to medications or toxins like: alcohol, drugs, lead, spider bites, snake bites. Recent studies suggest that COVID-19 vaccines can also be a factor for myocarditis due to the widespread of COVID-19 worldwide. Different types of COVID-19 vaccines affect myocarditis. Recent case reports, case series, cohort studies estimated that COVID-19 vaccine is a cause of myocarditis. Peak cardiac troponin I OR T levels, left ventricular fraction, duration of symptom and any reported complication are the consequences reported. Studies are conducted in the age group 17 to 52 years with a mean age of 28 years. They conducted 15 studies out of 15, 14 were males. 60% of myocarditis was allied through Pfizer-BioNTech vaccine, 33% were linked with Moderna vaccine, 7% were concomitant with Johnson and Johnson vaccine. Moderna vaccine produced myocarditis after the second dose13/15 patients were reported with peak cardiac troponin I level. 2/15 patients were reported with peak troponin T levels. 14/15 patients showed no regional wall abnormalities. Only one patient had subtle apical septal and apical lateral hypokinesis with LVEF of 52%. Cases reported with myocarditis allied with COVID-19 vaccines recovered within 6 months. No complications are found in these cases. This study shows that COVID-19 vaccine produces myocarditis with a fast recovery and no complications [26].

Special Population

Immunocompromised populations

The FDA approved and the CDC recommended a third dosage of COVID-19 mRNA vaccine for immunocompromised people in August 2021. The emergency use authorizations (EUAs) for both Pfizer and BioNTech were revised by the US Food and Drug Administration. Moderna and the COVID-19 Vaccine to allow for an additional dose in immunocompromised persons, such as solid organ transplant recipients or those diagnosed with illnesses that are considered to have an equal level of immunocompromise.

The COVID-19 pandemic has resurfaced in the United States, and the FDA is acutely aware that immunocompromised persons are particularly vulnerable to serious sickness.

People who are immunocompromised in the same way that people who have had solid organ transplants are less able to fight infections and other ailments, and they are particularly prone to infections like COVID-19. The FDA reviewed data on the use of a third dosage of the Pfizer-BioNTech or Moderna Vaccines in this demographic and concluded that third vaccination doses could improve protection in this population. To assist avoid COVID-19, these patients should be advised to take physical measures [27].

Cancer

Some vaccines are safe for people with cancer (or a history of cancer), although this depends on a number of circumstances, including the type of vaccine, the type of cancer a person has (had), if they are still being treated for cancer, and whether their immune system is functioning normally. The biggest question about having the vaccination is not whether it is safe for cancer patients, but rather how successful it will be, especially in those with compromised immune systems. Chemotherapy, radiation, stem cell or bone marrow transplants, and immunotherapy are all cancer treatments that might impair the immune system, making the vaccine less effective. People who have certain diseases, such as leukaemia or lymphoma, may have compromised immune systems, making the vaccine less effective. Although we don’t have precise data on how effective the vaccines are in people being treated for cancer, it’s possible that people with compromised immune systems are less likely to benefit from them than those with healthy immune systems. Despite this, most cancer patients should have the vaccine since individuals with a weakened immune system are at risk for severe COVID-19 disease, thus even a small amount of protection from the vaccine is preferable than no protection. The CDC also recommends taking a second dosage of COVID-19 vaccination for those with a weaker immune system who are completely vaccinated (at least two weeks past their previous dose of vaccine) [28].

Paediatrics

COVID-19 immunisation is recommended by the CDC and the American Academy of Paediatrics for all eligible
children and adolescents aged 5 and up. Children are just as likely as adults to become infected with COVID-19, and they can:

- Become very ill as a result of COVID-19
- Experience both short and long-term health consequences as a result of COVID-19
- Spread COVID-19 to others, including at home and at school.

More than 8,300 COVID-19-related hospitalizations and approximately 100 COVID-19-related deaths have been reported in children aged 5 to 11 years as of mid-October 2021. In fact, COVID-19 is one of the top ten causes of death among children aged 5 to 11 years old. Children infected with COVID-19 may suffer major problems such as multisystem inflammatory syndrome (MIS-C), a disorder in which many bodily components, such as the heart, lungs, kidneys, brain, skin, eyes, or gastrointestinal organs, become inflamed. More than 2,300 cases of MIS-C have been documented in children aged 5 to 11 years since the pandemic began. COVID-19 is more likely to cause serious sickness in children with underlying medical issues than in children without such conditions [29, 30].

Pregnant/Lactating

When compared to non-pregnant patients with COVID-19, pregnant and recently pregnant patients have a higher risk of more severe illness. When compared to symptomatic nonpregnant women, pregnant women with symptomatic COVID-19 infection have a higher risk of ICU admission, need for mechanical breathing and ventilatory support (ECMO), and mortality (Zambrano MMWR 2020, Khan 2021). Patients who are pregnant or recently pregnant and have comorbidities such as obesity or diabetes may be at an even higher risk of serious disease than the general population. The American College of Obstetricians and Gynaecologists recommends that pregnant women get vaccinated against COVID-19. Only approximately a third of pregnant women have been vaccinated against COVID-19 as of November 27, 2021. The need of completing the initial COVID-19 immunisation series for this population should be stressed due to the risk of serious sickness and death during pregnancy. There is no evidence of harm to the mother or foetus from receiving the COVID-19 vaccine during pregnancy, and research supports its usage. As a result, everybody who is or will be pregnant should get the COVID-19 vaccine. Vaccination can take place at any time during pregnancy, but the emphasis should be on receiving vaccines as soon as possible to provide the best possible mother and foetal health. The American College of Obstetricians and Gynaecologists recommends that nursing women get vaccinated against COVID-19. While nursing women were excluded from most clinical studies, COVID-19 vaccinations should not be denied to lactating women who otherwise fit the vaccination criteria. Theoretical worries about the vaccine’s safety in nursing women do not exceed the vaccine’s potential advantages, and research shows that COVID-19 vaccination is safe during lactation. In individuals who get the COVID-19 vaccine, there is no need to delay or stop breastfeeding [31].

Solid Organ Transplant

In transplant recipients, the immunogenicity and effectiveness of COVID-19 vaccinations remain uncertain. However, it is advised that all transplant candidates and their household members undergo vaccine when it is available. Ideally, transplant candidates should be vaccinated while waiting for their transplant. Vaccines should be started at least one month following transplantation or completed at least two weeks prior to transplantation. If given prior to transplant, both doses should ideally be completed prior to transplant to ensure complete protection. However, delaying transplantation to finish the vaccine series should not be done consistently and should be chosen on a case-by-case basis. In some cases, such as when T- or B-cell ablative therapy (anti-thymocyte globulin or rituximab) was used at the time of transplant, it may be recommended to wait at least 3 months before vaccinating.

The current recommendation is that everyone get the vaccination, regardless of previous COVID19 infection or indications of humoral immunity. There have been cases of COVID-19 reinfection in immunocompromised people, implying a lack of sufficient immune response or declining immunity after the initial infection. Furthermore, new research shows that persons who have been vaccinated against COVID-19 are less likely to be infected than people who have not been vaccinated. If a transplant recipient has already had COVID-19, he or she should wait until all symptoms have gone away and the isolation period has ended before proceeding.

If a patient becomes infected with COVID-19 after receiving the first dose of mRNA vaccination but before receiving the second dosage, the second dose should be given once the symptoms have subsided and the patient is no longer in the infectious window. The effect of
Delaying the second dose on vaccine efficacy and durability in transplant patients has not been explored, and it should be avoided if all possible. If a delay is necessary because of an incident COVID-19 infection, vaccination inaccessibility, or interval transplantation, it should be kept to a minimum. In certain cases, a consultation with an infectious disease specialist is recommended [32].

Deaths after COVID-19 Vaccination
As of January 8th, 2021, 6,688,231 people had received COVID-19 vaccines, with 55 deaths reported, and resulting in a mortality rate of 8.2 per million people. When 6, 93, 246 long-term care facility inhabitants were vaccinated, 37 deaths were reported, resulting in a mortality rate of 53.4 per million people. Half of the reported 25 deaths is in the over 85-year-old age group. 14 people died within a day of being vaccinated, and 45 people died within a week of being vaccinated. Hypertension, dementia, chronic obstructive pulmonary disease (COPD), diabetes, and heart failure are among the comorbidities linked to death. Pain relievers, fever reducers, and anti-hypertensive medications are all linked to this [33].

Discussion
Vaccines help to generate antibodies that fight against infections, and COVID-19 vaccines help to develop immunity against COVID-19. Vaccines are placed into the market after receiving approval from the national immunisation technical advisory panel. As a result, pharmacovigilance aids in the detection, assessment, comprehension, and avoidance of adverse effects following immunisation. This is done to keep people from having unneeded reactions and to lessen the strain on the public’s health. Due to their significant immunogenicity and excellent presentation of SARS-CoV-2 antigens to the immune system, RNA-based vaccines rated best in terms of efficacy, with a rate of more than 94 percent. 7 Currently, mutant virus strains are gaining popularity. Due to their use of the entire immunogenicity of SARS-CoV-2, RNA-based vaccines may be more effective against these mutant strains. However, after immunisation with RNA-based vaccines, the prevalence of ADRs is substantial, reaching over 80% according to clinical trial data, with only a modest proportion of grade 3 or 4 ADRs. Although the real-world prevalence of ADRs was lower than in clinical trials, the range was broader, and a major number of types of ADRs were not seen in clinical trials, implying that rare ADRs should be identified and treated with care. Meanwhile, myocarditis and pericarditis have been found in RNA-based vaccinations; fortunately, the rate of infection was modest. Protein subunit vaccines had an efficacy of 89 percent, while the maximum incidence of ADRs was only 57 percent, and the highest incidence of ADRs exceeding grade 3 was 3.85 percent, which was much lower than that of RNA-based vaccinations; hence, it could be a potential contender. However, because real-world data on protein subunit vaccinations is scarce and the published data sample is limited, more research is required. Furthermore, viral vector (non-replicating) vaccines have a 79 percent efficacy rate, but the maximum rate of ADRs is 40 percent.

Conclusion
In conclusion, vaccines are a valuable instrument in the fight against the COVID-19 pandemic, with high efficacy and manageable side effects. Each vaccine has its own set of benefits and drawbacks, and every citizen should opt for vaccination as soon as feasible. Furthermore, the range of ADRs linked to vaccines is vast, and most reactions manifest within a week, but there is sometimes a delay. Thromboembolic events and myocarditis/pericarditis were recognised as serious ADRs, while the rates were low. As a result, ADRs should be identified and handled as soon as possible following vaccination. We anticipate that our findings will help to dispel vaccine phobia among the general public and provide early recommendations on how to handle vaccine-related side effects.

References

