Phases of clinical trials: a review
Venkata Reddy Samala\textsuperscript{1}, C.Kiran kumar\textsuperscript{2}, P. Venkatesh\textsuperscript{3}
\textsuperscript{1} B.Pharmacy final year student, Jagan’s Institute of Pharmaceutical Sciences, Nellore
\textsuperscript{2} Associate Professor, Dept.of Pharmacy Practice, Jagan’s Institute of Pharmaceutical Science, Nellore
\textsuperscript{3} Principal Jagan’s Institute of Pharmaceutical Science, Nellore

Received: 14 Dec 2021 Revised: 05 Jan 2022 Accepted: 19 Jan 2022

Abstract
A Clinical trial is a research study in human volunteers to answer specific health questions. Carefully conducted clinical trials are fastest and safest way to find treatment that work in people and way to improve health. Investigational trials determine whether experimental treatment or new ways of using known therapies are safe and effective under controlled environment. Observational trails address health issues in large groups of people or population in natural settings. Clinical trials aim to measure therapeutic effectiveness and constitute an important and highly specialized form of biological assay. In phase I pharmacokinetic, safety, gross effects are studied on human volunteers, by clinical pharmacologists. If the drug passes the test, it enters phase II testing , where pharmacokinetics, safety, therapeutic efficiency are studied on selected patients by clinical pharmacologist, if passes hundreds of selected patients are now studied, primarily for safety and therapeutic effectiveness by clinical investigators in phase III. If this is passed the drug is now approved and marketed. Even after marketing, physicians from various hospitals and clinics send their opinion about the drug, regarding ADR, efficacy in phase IV.

Keywords: Clinical Trials, Preclinical Studies, Clinical studies, NDA, IND, ICH Guidelines.

*Corresponding Author
Venkata Reddy Samala

DOI: https://doi.org/10.38022/ajhp.v2i1.44

Introduction
Clinical Trials are research studies that are conducted in people (healthy participants or patients with a specific health issue) in order to study and test new medical treatments, such as drugs, vaccines, medical devices (e.g. Spinal cord stimulators procedures), medical procedures (e.g. surgical procedures), and diagnostic tests clinical trials may also be conducted to study new combinations of treatments, or to study an already available treatment for a new use (e.g. to trial a drug currently used for depression in patients with chronic pain) [1]. This article will focus on clinical trials for new drugs are medical devices. It will provide an overview of the research that comes before clinical Trials, the stages/phases of clinical trials, the regulatory, ethical and safety requirements, who is involved in conducting a clinical trial, what is involved, and what happens after a trial is complete [2]. In a clinical trial, participants receive specific interventions according to the research plan or protocol created by the investigators. These interventions may be medical products, such as drugs or devices; procedures; or changes to participants' behavior, such as diet. Clinical trials may compare a new medical approach to a standard one that is already available, to a placebo that contains no active ingredients or to no interventions [3].
Phases of Clinical Trials

Before pharmaceutical companies start clinical trials on a drug, they conduct extensive pre-clinical studies.

Pre-Clinical Studies

Pre-Clinical studies involve in vitro (i.e. test tube are laboratory) studies and trials on animal populations. Wide ranging dosages of the study drug are given to the animal subjects or to an in vitro- substrate in order to obtain preliminary efficacy, toxicity and pharmacokinetic information and to assist pharmaceutical companies in deciding whether it is worthwhile to go ahead with further testing [4].

Phase O

Study of new drug in micro doses to derive PK information in human before under taking phase I studies is called PHASE O.
Micro Dose: less than 1/100 of the dose of a test substance calculated to produce pharmacological effect with a max dose less than 100 micro grams.

Objective

To obtain preliminary pharmacokinetic data.

Pre-Clinical Data

Sub-acute toxicity study in one/species by two routes of administration.
Phase O is a recent designation for exploratory, first-in-human trials conducted in accordance with the U.S. food and Drug Administration’s (FDA) 2006 Guidance on Exploratory.
Investigational new Drug (IND) studies phase O trials are designed to speed up the development of promising drugs or imaging agents by establishing very early on whether the drug or agent behaves in human subjects as was anticipated from preclinical studies. Distinctive features of phase O trials include the administration of single sub therapeutic doses of the study drug to as small number of subjects(10-15) to gather preliminary data on the agent’s pharmacokinetics (how the body processes the drug) and pharmacodynamics (how the drug works in the body) [5].

Phase I

Phase I trials are the first stage of testing in human subjects. Normally, as small (20-80) group of healthy volunteers will be selected. This phase include trials designed to assess the safety, (pharmacovigilance), tolerability, pharmacokinetics, and pharmacodynamics of a drug. These trials are often conducted in an inpatient clinic, where the subject can be observed by full-time staff. The subject who receives the drug is usually observed until several half-lives of the drug have passed.
Phase I trials also normally include dose-ranging, also called dose escalation, studies so that the appropriate dose for therapeutic use can be found. The tested range of doses will usually be a fraction of the dose that causes harm in animal testing. Phase I trials most often include healthy volunteers. However, there are some circumstances when real patients are used, such as patients who have End-stage disease and lack other treatment options. This exception to the rule most often occurs in oncology (cancer) and HIV drug trials. Volunteers are paid an inconvenience fee for their time spent in the volunteer center. Pay ranges from a small amount of money for a short period of residence, to a larger amount of up to approx. $4000 depending on length of participation [5].

There are different kinds of phase I trials

1. Sad

Single Ascending Dose studies are those in which small groups of subjects are given a single dose of the drug while they are observed and tested for a period of time. If they do not exhibit any adverse side effect, and the pharmacokinetic data is roughly in line with predicted safe values, the dose is escalated, and a new group of subjects is then given a higher dose. This is continued until pre calculated pharmacokinetic safety levels are reached, or intolerable side effects start showing up at which point the drug is said to have reached the maximum tolerated dose (MTD).

2. Mad

Multiple Ascending Dose studies are conducted to better understand the pharmacokinetics & pharmacodynamics of multiple doses of the drug [6].
Phase II

Once the initial safety of the study drug has been confirmed in phase I trials, Phase II trials are performed on larger groups (20-300) and are designed to assess how the drug works will, as well as to continue Phase I safety assessment in a larger group of volunteers and patients. When the development process for a new drug fails, this usually occurs during Phase II trials when the drug is discovered not to work as planned, or to have toxic effects.

Phase II studies as sometimes divided into Phase IIA and Phase IIB. Phase IIA is specifically designed to assess dosing requirements (how much drug should be given). Whereas Phase IIB is specifically designed to study efficacy (how well the drug works at the prescribed doses). Some trials combine Phase I and phase I, and test both efficacy and toxicity [7].

Phase III

Phase III studies are randomized controlled multicenter trials on large patient groups (300-3000 or more depending upon the disease/medical condition studied) and are aimed at being the definite assessment of how effective the drug is, in comparison with current ‘gold standard’ treatment. Because of their size and comparatively long duration, Phase III trials are the most expensive, time-consuming and difficult trials to design and run, especially in therapies for chronic medical conditions. It is common practice that certain phase III trials will continue while the regulatory submission is pending at the appropriate regulatory agency. While not required in all cases, it is typically expected that there be at least two successful Phase III trials, demonstrating a drug’s safety and efficacy, in order to obtain approval from the appropriate regulatory agencies (FDA(USA), TGA (Australia), EMEA (European Union), etc. Most drugs undergoing Phase III clinical trials can be marketed under FDA norms with proper recommendations and guidelines, but in case of any adverse effects being reported anywhere, the drugs need to be recalled immediately from the market. While most pharmaceutical companies refrain from this practice, it is not abnormal to see many drugs undergoing Phase III clinical trials in the market [8].

Phase IV

Phase IV is also known as Post-Marketing Surveillance Trial. Phase IV trials involves the safety surveillance (pharmacovigilance) and Ongoing technical support of a drug after it receives permission to be sold. Phase IV studies may be required by regulatory authorities or may be undertaken by the sponsoring company for competitive (finding a new market for the drug) or other reasons (for example, the drug may not have been tested for interactions with other drugs, or on certain population groups such as pregnant women, who are unlikely to subject themselves to trials). The safety surveillance is designed to detect any rare or long-term adverse effects over a much larger patient population and longer time period than was possible during the phase I-III clinical trials. Harmful effects discovered by phase IV trials may result in a drug being no longer sold, or restricted to certain uses: recent examples involves cerivastatin (brand names Baycol and Lip bay), in troglitazone (Rezulin) and rofecoxib (Vioxx) [9].

Investigational New Drug (IND)

INDs (in the U.S.), CTXs (in the U.K.) and CTAs (in Australia) are examples of appropriate regulatory authorities for permission to conduct investigational research. This research can include testing of a new dosage form or new use of a drug already approved to be marketed. In addition to obtaining permission from appropriate regulatory authorities, an Institutional or Independent Review Board (IRB) or Ethical Advisory Board must approve the protocol for testing as well as the informed consent documents that volunteers sign prior to participating in a clinical study. An IRB is an independent committee of physicians, community advocates and others that ensures a clinical trial is ethical and the rights of study participants are protected [10].

New Drug Application (NDA)

NDAs (in the U.S.), and MAAs (in the U.K.), are examples of applications to market a new drug. Such application document safety and efficacy of the investigational drug and contain all the information collected during the drug development process. At the conclusion of successful preclinical and clinical testing’s, this serious of documents is submitted to the FDA in the U.S or to the applicable regulatory authorities in other countries. The application must present sustainable evidence that the drug will have the effect it is represented to have when people use it or under the conditions for which it is prescribed recommended or
suggested in the labeling, obtaining approval to market
a new drug frequently takes between six months and
two years [10].

**TYPES OF CLINICAL TRIALS:**
They are five types

1. **Treatment trials**
   Test experimental treatments, new combinations
   of drugs, or new approaches to surgery or
   radiation therapy.

2. **Prevention trials**
   Look for better ways to prevent disease in people
   who have never had the disease or to prevent a
   disease from returning. These approaches may
   include medicines, vitamins, vaccines, minerals,
or lifestyle changes.

3. **Diagnostic trials**
   Conducted to find better tests or procedures for
diagnosing a particular disease or condition.

4. **Screening trials**
   Test the best way to detect certain diseases or
   health conditions.

5. **Quality of Life**
   Trials (or Supportive Care trials) explore ways to
   improve comfort and the quality of life for
   individuals with a chronic illness [11].

**Monitoring Clinical Trials**
The purposes of trial monitoring are to verify that:

1. The rights and wellbeing of human subjects
   are protected.
2. The reported trial data are protected.
3. The conduct of the trial is in compliance with
   the currently approved protocol/amendments,
   with GCP, and with the applicable regulatory
   requirements.

**ICH GCP Guidelines**
The principles of ICH GCP

1. Clinical trial should be conducted in
   accordance with the ethical principles that
   have their origin in the declaration of
   Helsinki, and that are consistent with GCP
   and the applicable regulatory authorities.
2. Before a trial is initiated, foreseeable risks
   and inconveniences should be weighed against
   the anticipated benefit for the individual
   trial subject and society. A trial should be
   initiated and continued only if the
   anticipated benefits justify the risks.
3. The rights, safety, and wellbeing of the trial
   subjects are the most important
   considerations and should prevail over
   proposed clinical trial.
4. The available non clinical and clinical
   information on an investigational product
   should be adequate to support the proposed
   clinical trial.
5. Clinical trials should be scientifically sound,
   and described in a clear, detailed protocol.
6. A trial should be conducted in compliance
   with the protocol that has received prior
   institutional review board (IRB) independent
   ethics committee (IEC) approval opinion.
7. The medical acre given to and medical
   decisions made on behalf of, subjects should
   always be the responsibility of a qualified
   physician, or when appropriate, of a qualified
   dentist.
8. Each individual involved in conducting a trial
   should be qualified by an education, training,
   and experience to perform his or her
   respective tasks.
9. Freely given informed consent should be
   obtained from every subject prior to clinical
   trial participation.
10. All clinical trial information should be
    recorded, handled, and stored in a way
    that allows its accurate reporting, interpretation
    and verification.
11. The confidentiality of records that could
    identify subjects should be protected,
    respecting the privacy and confidentiality
    rules in accordance with the applicable
    regulatory requirement.
12. Investigational products should be
    manufactured, handled, and stored in
    accordance with applicable good
    manufacturing practice (GMP). They should
    be used in accordance with the approval
    protocol.
13. Systems with procedures that assure the
    quality of every aspect of the trial should be
    implanted [12].

**International Conference on Harmonization Guidelines**
In recognition of the international market place for
pharmaceutical and in an effort to achieve global
efficiency for both regulatory agencies and the
pharmaceutical industry, the FDA, counterpart
agencies of the European union and Japan and
geographic representatives of the pharmaceutical
industry formed a tripartite organization in 1991 to discuss, identify, and address relevant regulatory issues. This organization, named the international conference on harmonization of pharmaceuticals for Human Use (ICH) has worked toward harmonizing, or bringing together, regulatory requirements with the long-range goal of establishing a uniform set of standards for drug registration within these geographic areas.

Examples of specific ICH developed guidelines
1. Stability testing of new drugs/substances and products
2. Validation of analytical procedures for Pharmaceuticals
3. Impurities in new drug substances and products
4. General consideration for clinical trial [12].

Role of Pharmacists in Clinical Trials
Pharmacists have an active role to play in research and clinical trials first of all, we provide the necessary facilities required for proper storage of the investigational medicinal products (IMPs), either in the fridge or at controlled room temperature, regular temperature monitoring is ensured and recorded. It is also the pharmacist’s duty to ensure there is constant supply of IMPs, at all times, and that they are dispensed to patients accordingly. Patients are counseled on the correct use of the IMPs in addition to written information that is provided, such as, informed Consent Form for the patient Information Leaflet. IMP’s returns from patients are counted and documented to determine compliance to the treatment. For injectable IMP’s, pharmacists will also ensure that they are prepared in accordance to the specifications stipulated in the trial, and that they are administered appropriately. Drug Utilization Evaluation (DUEs) is research projects that are commonly conducted by pharmacists. These projects aim to facilitate rational use of drugs within our patients. Essentially, providing insights on how drugs are used in patients and observing prescribing patterns by our physicians. DUEs are sometimes considered as drug audits because pharmacists are ensuring the use of medication is appropriate. Results obtained from surveys are used to improve the services that we provide to our patients. Currently, NCC’s oncology pharmacy is conducting two surveys. We would like to take this opportunity to thank all our patients who have consented to participate in the survey [13].

Conclusion
A clinical trial for any new drug follows under the guidelines of ICH and GCP, clinical trials are conducted in human volunteers for confirmation of useful properties of new drug. After preclinical development, investigational new drug passes through clinical phases I, II, III, IV. These phases provide in detail explanation of pharmacokinetic, pharmacodynamics profile and side effect which may be harmful or beneficial, adverse effect and Post marketing surveillance.

References
1. Information about clinical trial. Available from: URL http://www.temple.edu/pascop e/about_trails.html
2. Information about clinical trials available https://genesis research services.com
5. Dr. Ashutosh Tiwari 2nd Yr. PG Resident Pharmacology Department SAIMS, Indore, 30-10-2014.
9. Rasika, walunj M. pharmacy (QAT) Modern College of Pharmacy, Moshi, Pune. Available from https://www.slideshare.net
10. Types of clinical trials available at https://en.m.wikipedia.org
11. ICH Harmonized Tripartite Guideline for Good Clinical Practice ‘Academy For Clinical Excellence’